Structural Origin of the Activity in Mn3O4-Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction.
نویسندگان
چکیده
Non-precious metal oxide/carbon hybrid electrocatalysts are of increasing importance for the oxygen reduction reaction (ORR). A synergistic effect is commonly used to explain the superior ORR activity exerted by metal oxide/nanocarbon hybrids, and this effect is attributed to covalently coupled interfaces between the two materials. However, the origin of the high activity, the structure, and the electrocatalytic nature of the interface remain unclear. By combining X-ray photoelectron spectroscopy with synchrotron far-infrared spectroscopy, we resolved the interface structure between spinel manganese oxide nanocrystals and graphene oxide nanoribbons, and the role of this interface in the promoted ORR. Moreover, we demonstrated the excellent ORR activity by a functional synergism of the hybrid constituents through a series of comparative electrochemical experiments.
منابع مشابه
A hybrid of holey graphene and Mn3O4 and its oxygen reduction reaction performance.
A hybrid of holey graphene and Mn3O4 is prepared by a one-step process, in which the formation of a holey structure is accompanied with Mn3O4 nanoparticles through a high temperature reaction between graphene oxide sheets and KMnO4. Holey graphene and Mn3O4 collaboratively attributed to the enhanced catalytic activity and efficiency towards the oxygen reduction reaction.
متن کاملSynthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction
In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...
متن کاملPreparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملFacile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction
In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ChemSusChem
دوره 8 19 شماره
صفحات -
تاریخ انتشار 2015